Allowing other control of your program via AppleEvents

All Macintosh programs should allow some control over themselves by other program. The key to that goal is building an ‘aete’ resource for your program. What does ‘aete’ stand for? I don’t know, but I do know what it does. If your program has an ‘aete’ resource it can receive AppleEvents. AppleEvent enabling you program is a two step process. Step one is building the ‘aete’ resource and step two is writing code to act on AppleEvents sent from other programs. AppleScript is then simply a programming language whose purpose is to send AppleEvents to programs and process the responses.

For step one you need an ‘aete’ resource editor. Classic users get off easy. The free editor EightyRez is available at http://www.panix.com/~gmcgath/EightyRez.html. OS X users can use Resourcer (http://www.mathemaesthetics.com/ResorcererIndex.html). It is not free.

We will start with the most simple of examples. A new program that can respond to a single AppleEvent. Fire up EightyRez and choose “New” from the “File” menu. In an AppleScript dictionary related commands are grouped into suites. Your new resource will already have the “Required” suite. The commands allowed in this suite are pre-defined by Apple and while we should implement the “Required Suite” events, for this exercise we won’t. But, we will start a new suite for our custom events.

Under the “aete” menu choose “New Suite”. Give it any four letter code as the “ID”. Give the suite a name and description. Under the new suite highlight the “events” list and choose “New Event…” from the ‘aete’ menu. Type “mcmd” in the “ID” field and “rbas” in the “Class” field. Fill in “Name” with the word “TestAE” and “Description” as “Tests the applications AppleEvent ability”. In the “Reply Type” drop-down choose “TypeInteger”. Click “OK” and save this file as “MyApp.aete”.

Start a new REALBasic project. Drag the “MyApp.aete” file into the project window. This adds the resource to your project to it is compiled into the finished application.

Add a new class to the project, name it “App” and set its superclass “Application”. In the “App” class you’ll see under the “Events” list and event called “HandleAppleEvent”.

The methods declaration look like:

Function HandleAppleEvent(event As AppleEvent, eventClass As String, eventID As String) As Boolean
The ‘eventClass’ and ‘eventID’ will match what we set up in the ‘aete’ resource. The ‘event’ the complete AppleEvent that was sent. It will be useful when you start creating more complex AppleEvents that can handle data sent by other programs. In our example it will contain noting useful. But, want can return a value to the calling program using the ‘event’. Finally, you must return a boolean. “TRUE” if you handled the AppleEvent, false if you are not going to handle the event.

Drag a list box to the window and name it “lbMain”. Give it two columns named “Class” and “ID”. Now, back to the “HandleAppleEvent” event of the “App” class.

In the event place this code:

wMain.lbMain.addRow eventClass

wMain.lbMain.cell(wMain.lbMain.lastIndex,1) = eventID

return true

Save and compile this program as “AEApp”.

Now fireup AppleScript Editor. Open the dictionary of “AEApp” and you’ll see your custom AppleScript verb. Start a new script. The code for the script is:

tell application "AEApp"

TestAE

end tell

Save this script or simply run it from the editor. You’ll see your custom Class ID and Event ID show up in the list box.

With just this technique the possibilities are endless. As you click around the system and use AppleScript editor Class/Event combinations may show up spontaneously. Many things in the Mac OS trigger an AppleEvent to be sent to your application.

To properly respond to these events you need to clean up the code in your “HandleAppleEvent” event. Replace the code with this:

if eventClass = "rbas" and eventID = "mcmd"

 ' Now we'll only respond to AppleEvents that we want

 wMain.lbMain.addRow eventClass

 wMain.lbMain.cell(wMain.lbMain.lastIndex,1) = eventID

 return true

 end if

 return false ' Return false for anything we don't handle in code

The last simple thing we can do with our current application is return a value to the calling application. Previous in out ‘aete’ resource setup we indicated a return type of integer. To return an integer value we simply set a property of the ‘event’ parameter.

In the “HandleAppleEvent” event change the code to this:

if eventClass = "rbas" and eventID = "mcmd"

 ' Now we'll only respond to AppleEvents that we want

 wMain.lbMain.addRow eventClass

 wMain.lbMain.cell(wMain.lbMain.lastIndex,1) = eventID
 event.ReplyInteger = 1
 return true

 end if

 return false ' Return false for anything we don't handle in code

And make the script look like:

tell application "AEApp"

set MyReturnValue to TestAE

end tell
Compile the application and run the script. The “result” window in AppleScript Editor will show you the number one.
Explore all of the “reply” types of the “AppleEvent” and you see the variety of the values you can pass back to the calling script.

Now go forth and make your apps as scriptable as possible with the new knowledge you have. Next time we’ll learn how to pass information into your program inside of an AppleEvent to make your responses even more customized.

