Controlling other applications using AppleEvents

Using compiled AppleScripts is an easy way to get control over other applications but it has its limitations. Using raw AppleEvents gives you almost all the power you need to dynamically control other applications.

In this article we’ll rewrite the AppleScripts from issue 1.1 using AppleEvents. The example application includes all the original AppleScripts plus the equivalent AppleEvents.

A new AppleEvent is created using the “NewAppleEvent” class. In its simplest form it takes as parameters the event class, the event ID and the target application creator code and returns an “AppleEvent” object. The best example is the famous “Empty Trash” AppleScript.

Tell application “Finder”

 Empty trash

End tell

We can examine the raw AppleEvent this AppleScript creates using the freeware utility Capture AE (http://www.westcodesoft.com/downloads/octools.html) under classic OS. (No similar utility for OS X is available but some command line parameters can be set to capture some raw AppleEvents on the console)

If we run this script on classic OS and examine using Capture AE the raw AppleEvent it created we see this line:

Process("Finder").SendAE "fndr,empt,'----':obj {form:prop, want:type(prop), seld:type(trsh), from:'null'()}, &csig:magn(«00010000»)"

This line shows us the name of the target application: “Finder”, the event class: “fndr” and the event ID:”empt”. The rest of the line is useful in more complex AppleEvents but not in this case. The missing piece is the creator code of the target application, the Finder. This can be discovered in many ways but using ResEdit is the most popular and in this case shows us that the Finders’ code is “MACS”. To make this into an AppleEvent in REALbasic is now trivial.

dim myAE as AppleEvent

dim myBoolean as boolean

' Make a new AppleEvent using information

‘ from Capture AE output...

myAE = NewAppleEvent("fndr","empt","MACS")

myBoolean = myAE.send

The last line is the code uses the “send” method of the AppleEvent to execute it. The method returns a Boolean value indicating success or failure.

We increase the complexity when we want the target application to return some data to us. In this case we want ITunes to return a list of playlist names.

The script is:

tell application "iTunes"

set PlayListList to the name of every playlist

end tell

return PlayListList

The Capture AE output is:

Process("iTunes").SendAE "core,getd,'----':obj {form:prop, want:type(prop), seld:type(pnam), from:obj {form:indx, want:type(cPly), seld:abso(«616C6C20»), from:'null'()}}, &csig:magn(«00010000»)"
Here is where we need to put on the thinking cap and do some research. First the creator code of iTunes is “hook”. Breaking down the Capture AE output we see we need an AppleEvent with the class “code” and ID “getd”. So we start with

dim myAE as AppleEvent

dim myBoolean as Boolean

myAE = NewAppleEvent("core","getd","hook")

Capture AE also shows this event takes a parameter. Parameters have names and values. The name of the first parameter is “----“. Unusual name but the name of a parameter can really be almost any characters. The value of the parameter is an object. The object has a structure of four properties: form, want, seld and from. We need to build this object and attach it to our AppleEvent. First we see the “form” of the object is “prop”. So we need to create an instance of the AppleEventObjectSpecifier class and assign our instance a “Property” object. We do this using the “GetPropertyObjectDescriptor” function. It takes as parameters an object and a name. We get the “name” from the “seld” property. In this case “pnam”. We get the object parameter from the “from” property. Here we see that the “from” property is another object. So, we’ll need to create a second instance of AppleEventObjectSpecifier and attach it to the first’s property object. In essence we are nesting the objects. So we build them from the lowest to highest.

The second object’s “form” parameter is of type “indx”. So one would think that we use the “GetIndexObjectDescriptor” function to return an AppleEventObjectSpecifier of form “indx”. The “GetIndexObjectDescriptor“ function takes three parameters: a class, a object and an index. On our case the class is “cPly” (the “type” property) the object is “null” (the “from” property) and the index is represented by the “seld” property. It looks unusual but a little detective work shows that is is simply a hexadecimal encoded string of four characters. Those characters “61 6C 6C 20” translate to “all “ (a space on the end).This is the problem, the index parameter is an integer. We would use “GetIndexObjectDescriptor“ when we want to get one specific index of a list but in this case we want to get “every” list name. So, we need to use the “GetOrdinalObjectDescriptor” function instead. This function also returns and object of form:”indx” but allows us to specify the “all “ parameter. The code ends up like this:

dim myAE as AppleEvent

propObj,indxObj as AppleEventObjectSpecifier

dim myBoolean as Boolean

‘Make the AppleEvent

myAE = NewAppleEvent("core","getd","hook")

‘Create the Index Object

indxObj = GetOrdinalObjectDescriptor("cPly",nil,"all ")

‘Create the Property Object and nest the Index object within it

PropObj = GetPropertyObjectDescriptor(indxObj, "pnam")

‘Assign the Property Object to the AppleEvent

myAE.ObjectSpecifierParam("----") = PropObj

‘Execute the AppleEvent

myBoolean = myAE.send
Now if myBoolean is true then we can examine the AppleEvent’s return parameters for data that iTunes has supplied.

The AppleScript that makes iTunes return all the playlist names returns an unordered list. In REALbasic this same data would be returned in our AppleEvent’s ReplyDescList property.

We can examine the “count” property to see how many names were returned and then loop through them.

if myBoolean then

 ' Examine the returned values.

 listCount = myAE.ReplyDescList.Count

 for i = 1 to listCount

msgbox myAE.ReplyDescList.StringItem(i)

 next

end if

The last thing we need to do is supply iTunes with the name of a playlist and have it return a list of songs.

The example script could be:

tell application "iTunes"

return the name of every track of playlist “Country”

end tell

The output from Capture AE is:

Process("iTunes").SendAE "core,getd,'----':obj {form:prop, want:type(prop), seld:type(pnam), from:obj {form:indx, want:type(cTrk), seld:abso(«616C6C20»), from:obj {form:name, want:type(cPly), seld:“Country”, from:'null'()}}}, &csig:magn(«00010000»)"

This AppleEvent has three objects (double nested). Here’s the code to build them using the example script.

dim lChoice,i,listCount as integer

dim listName,trackNames as string

dim myAE as AppleEvent

dim myBoolean as boolean

dim propObj,indxObj,nameObj as AppleEventObjectSpecifier

' Create AppleEvent

myAE = NewAppleEvent("core","getd","hook")

' Innermost object is of form:name

nameObj = GetNamedObjectDescriptor("cPly",nil,”Country”)

' Middle object is of form:indx but is ordinal

indxObj = GetOrdinalObjectDescriptor("cTrk",nameObj,"all ")

' Main Object is of form:prop

propObj = GetPropertyObjectDescriptor(indxObj,"pnam")

‘Assign the main object to the AppleEvent

myAE.ObjectSpecifierParam("----") = propObj

' Execute the AppleEvent

myBoolean = myAE.send

' Check the return value

if myBoolean then

 listCount = myAE.ReplyDescList.Count

 for i = 1 to listCount

 msgbox myAE.ReplyDescList.StringItem(i)

 next

end if

See the downloadable example application for a more general solution and some extra code for when you double click on a track name.

See how simple AppleEvents can be?

