Add some complexity to your verbs

In this article we’ll be going back to the theme of issue 1.2 and add complexity to the verbs that your program exposes to the outside world.
Again, you’ll need an ‘aete’ resource editor. Classic users can use the free editor EightyRez. It’s available at http://www.panix.com/~gmcgath/EightyRez.html. OS X users can use Resourcer (http://www.mathemaesthetics.com/ResorcererIndex.html) but you have to pay for the privilege. The explanations presented here will be using EightyRez.

The easiest way to add functionality to your AppleScript verbs is to allow the user to pass in a parameter into your program. You can then act on this parameter and customize your response. The original application from issue 1.2 had a very simple AppleScript verb. Adding an inbound parameter to this verb is easy. Using EightyRez open the “aete” resource “MyApp.aete”. Navigate into the “My Apps Suite” and then to the “TestAE” event. Double click the event to bring up the event information. The class and the ID are already defined as well as the expected return type. Simply chose “typeInteger” from the drop-down menu next to the “Direct Param Type” label. Fill in the “Direct Parm Desc” with something like “The test integer to send to the test program”. Save the resource and quite EightyRez.

Now, you just need to modify the code in the “HandleAppleEvent” event to grab the parameter.

Make the code look like this:

Function HandleAppleEvent(event As AppleEvent, eventClass As String, eventID As String) As Boolean

 if eventClass = "rbas" and eventID = "mcmd" then

 ' Now we'll only respond to AppleEvents that we want

 wMain.lbMain.addRow eventClass+"-T"

 wMain.lbMain.cell(wMain.lbMain.lastIndex,1) = eventID

 msgbox str(event.IntegerParam("----"))

 event.ReplyInteger = 1

 return true

 end if

 ‘ We get here is this is an event we don’t want

 wMain.lbMain.addRow eventClass+"-F"

 wMain.lbMain.cell(wMain.lbMain.lastIndex,1) = eventID

 return false ' Return false for anything we don't handle in code

End Function

Here we first check to see if this is the event class and ID we want to handle. If it is we display a message box containing the passed integer parameter. You access the information using the “IntegerParam” property of the AppleEvent object. You must supply the ParameterName. The default ParameterName is four dashes. This verb is also expecting a return value so we send one then return “TRUE” so the script doesn’t receive an error. The rest of the code simply adds the event to the windows list if it is not the expected event and returns “FALSE” to indicate to the sending program that our application doesn’t handle the event. Several different types of data can be passed into a REALBasic AppleEvent. The following table shows what AppleEvent property is used to access the different “Direct Param Types” when setting up a new verb.

	Direct Param Type
	REALBasic AppleEvent Property

	typeBoolean
	BooleanParam

	typeAEList
	DescListParam

	typeFloat
	DoubleParam

	typeEnumerated
	EnumeratedParam

	typeFSS
	FolderItemParam

	typeInteger
	IntegerParam

	typeType
	MacTypeParam

	typeObjectSpecifier
	ObjectSpecifierParam

	typeAERecord
	RecordParam

	typeShortInteger
	SingleParam

	typeChar
	StringParam

Next issue we go hard core and start talking about setting up your verbs so they conform to an object model.

