
Sample Markdown Article

Taking stock analysis to the next level

by Marc Zeedar

At a Glance

XD#: 00000

Target Reader: Intermediate

Source Code: Yes

About the Author: Marc taught himself programming in high school when he bought his
first computer but had no money for software. He's had fun learning ever since.

Last issue when I wrote about my program to retrieve stock prices, it was my "just get it
working" attempt. It wasn't the ultimate stock program I originally envisioned, especially
in terms of how the data was presented and what you could do with it.

What I really wanted was a way to write stock analysis scripts: basically mini-programs
that could do math based on current stock prices.

Naturally, I could write these in Xojo*, but by nature these are the kinds of things that
change frequently, so a XojoScript approach makes a lot more sense. With XojoScript,
I'd have all the power of Xojo and I could rewrite my scripts at any time without having
to recompile my original program.

(*I also could use a spreadsheet, but where's the fun in that?)

As I began thinking about just how to do what I wanted, I realized this is not only a tricky
problem in several ways, it presents a great opportunity to demonstrate some unusual
aspects of XojoScript.

So even if you aren't interested in stock tracking in particular, you may find some
techniques here you can use in your own projects. And if you've never tried XojoScripts,
you're in for a treat. (XojoScript is by far my favorite feature of Xojo.)

Creating A Stock Language

Now one of my favorite features of Soulver is that it lets me create variables of stock
tickers that represent the current value of the stock. So a line like this

10 x AAPL

produces the current value of 10 shares of Apple stock.

I wanted to do the same thing with my XojoScript solution. Clearly that could easily be
done by adding variable names for each stock ticker. However, that means you have to
define each stock item manually:

dim APPL as string = "AAPL"

One problem with the above is that is a string, not a price. You'd then have to convert that
to an amount with a function:

dim price as double = getPrice(AAPL)

This is doable, but it's a lot more coding than we want. It's also not exactly clear that
items like are variables or what kind of variable they are.AAPL

For those reasons -- and a couple of others I'll get into in a moment -- I decided it would
be wise to precede each stock variable with the letters "st" so would be . It'sAPPL stAPPL
slightly uglier, but it makes it clear that these are stock ticker variables.

To solve the string/number issue, I decided to use a custom object.

It's not widely known, but XojoScripts can define classes just like you can in the Xojo
IDE. Here's the XojoScript code to define our class:stockClass

class stockClass
 dim shares as double
 dim ticker as string
 dim price as double

 sub constructor(stockTicker as string, sharesHeld as double)
 ticker = stockTicker
 shares = sharesHeld
 price = cachedStockPrice(ticker)
 end sub

 function value() as double
 return price * shares
 end function
end class

What this does is give us a storage object for our stock ticker string () as well as theticker
amount of shares held (). We can then pass this object around to various functions inshares
our script(s) and do calculations with this stock's value.

Since this class has a constructor, in order to create a new object of this type, we have to
call with the stock name and amount values:new

dim stAAPL as new stockClass("AAPL", 100)

This line would create a new variable called whose property would bestAAPL ticker
"AAPL" and whose property would be .amount 100

You'll note that the constructor calls a special function in our main program called
 which returns the current price of the stock and it sets an internal classcachedStockPrice

property, , to that value.price

This class solves the string/number problem since both are stored in the object and we
can work with whichever we want (i.e. or).stAAPL.price stAAPL.ticker

Our class also has a function, which conveniently returns the total value of all thevalue
shares of stock (shares multiplied by price).

Note that because our stock object contains the amount of shares we own, if you want to
store share amounts you'll have to use multiple objects.multiple

For instance, say you and your spouse each have an IRA, or maybe you yourself have
multiple retirement accounts. Each account probably has a different amount of AAPL
shares. You'd have to do something like this:

dim stAAPL-IRA1 as new stockClass("AAPL", 74.3)
dim stAAPL-IRA2 as new stockClass("AAPL", 47.8)

This would allow you to create a script that calculates the total value of each IRA.

A XojoScript Primer

XojoScript is a broad topic and it's a difficult concept to explain to
someone who has never used it, but I will do my best. Here are the key
features of XojoScript you need to know.

Two XojoScripts It's confusing at first, but there are really two
XojoScript components: the XojoScript object, which is an invisible
control (like a) you place on a window in your main program,Timer
and the actual script (code) which will be executed when the
XojoScript is called.

Plain text code Scripts themselves are just plain text code like dim s
 and . You can use all of the core Xojo languageas string for i = 1 to 10

and datatypes, but keep in mind that framework and objects don't
work, so you can't use things like or .folderItem date

Code from anywhere Since scripts are plain text, they can come
from anywhere: a file on disk, code typed into a inside thetextArea
main program, or even text downloaded from the Internet. This is
what gives XojoScript its power, since you can modify external
scripts at any time, your program can change what it does without
having to recompile it.

XojoScripts run inside your main program When a XojoScript is
executed, it's running inside a private bubble within your main

program. This means that by default, a script cannot see properties
and functions and objects that exist in your main program. And vice
versa -- your main program cannot see what the script is doing.

Context means sharing You can share information between the
script and your main program via a object. Basically,context
whatever functions, methods, or properties the context object has,
those are available in your scripts! So while a script can't natively
display a dialog, you could write a simple method inshowDialog
your context and call it from your script. The same thing works in
reverse: you could add a property, say to your contextname as string
object, and then your script could refer to and there would bename
no syntax error: would be a script object your script can set orname
get.

Context extends script abilities By using the context object, you
can actually extend the abilities of scripting to do things that aren't
normally supported. For instance, in one of my programs I have
created my own picture type object. XojoScript by itself can't work
with pictures, but my main Xojo program can, so my script class
sends all the picture creating and manipulation stuff back to the
main program where all the work is done. This allows my script to
"draw" lines, shapes, text, and even other pictures onto a picture
object which can then be exported to disk as a JPEG file.

